Hall	all Ticket Number:												
												Code No.: 21415 O3	

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. II Year (Mech. Engg.) I-Semester Supplementary Examinations, May/June-2017

Fluid Dynamics

Time: 3 hours Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B

. Part-A (10 X 2=20 Marks)

- 1. Differentiate between ideal and real fluids.
- 2. Viscosity of water at 20°C -----.
- 3. Define flownet and write its uses.
- 4. Write the relation between absolute pressure, gauge pressure and atmospheric pressure.
- 5. List out minor losses in pipes.
- 6. Show that $f = 64/R_e$ where f is friction factor and R_e is reynolds number.
- 7. Define displacement thickness and energy thickness.
- 8. Differentiate between pressure drag and friction drag.
- 9. Differentiate between adiabatic and isothermal process.
- 10. Define mach number and classify the flows based on it.

Part-B $(5 \times 10 = 50 \text{ Marks})$ (All bits carry equal marks)

- 11. a) Define viscosity and derive Newton's law of viscosity.
 - b) The velocity components in a 2D flow field for an incompressible fluid are as follows: $u = y^3/3 + 2x x^2y$ and $v = xy^2 2y x^3/3$ obtain an expression for the stream function Ψ
- 12. a) Explain differential U tube manometer with neat sketch.
 - b) In a smooth pipe of uniform diametre 25 cm, a pressure of 50 kPa was observed at section 1 which was at elevation 10.00 metres at another section 2 at elevation 12.00 metres. The pressure was 20 kPa, velocity was 1.25 m/sec. Determine the direction of flow and the head loss between these two sections. The fluid in the pipe is oil of specific gravity 0.89.
- 13. a) Derive Hagen Poiseuilles's equation for Laminar flow through circular pipes.
 - b) A smooth pipe of diametre 80 and 1000 m long is carrying water at 8 litre per second. If kinematic viscosity is 0.015 stockes for water and f = 0.0791/(Re)^{1/4}. Calculate:
 i) Loss of height ii) Wall shear stress iii) Shear stress at 20mm from pipe wall.
- 14. a) Find the ratio of displacement thickness to momentum thickness and momentum thickness to energy thickness for the velocity distribution in the boundary layer given by $u/U = 2(y/\delta) (y/\delta)^2$.
 - b) A 2 m wide and 5.0 long plate when towed through water at 20°C experiences a drag of 30.08 N on both sides. Determine the velocity of the plate and the length over which the boundary layer is laminar.

Code No.: 2141503

- 15. a) Derive the equation in compressible flow for velocity of wave $C^2 = KRT$, form fundamentals.
 - b) Calculate the stagnation pressure, temperature and density on the stagnation point on the nose of a plane, which is flying at 800 kmph through still air having a pressure 8.0 N/cm^2 and temperature -10°C . Take R = 287 J/Kg and k = 1.4.
- 16. a) Write the properties of velocity potential function.
 - b) A pipe contain an oil of specific gravity 0.8. A differential manometer connected at the two points A and B of a pipe shows the difference in mercury levels as 20 cm. Find the difference of pressure at two points.
- 17. Write short notes on two of the following:
 - a) Reynolds experiment

ode No.: 21415 D3

- b) Boundary layer controlling measures
- c) Stagnation temperature.

Anna State of the Parish

In The velocity components in a 2D flow field for an incompressible fluid are on follows $u=y^3/3+2x-x^2y$ and $v=xy^3-2y-x^3/3$ obtain an expression for the stream function y

a smooth pipe of onitions diametre 25 cm, a pressure of 50 kPn was observed a smoot which was at esecution 10.00 metres at mother section 2 at elevation 12.00 etrus. The pressure was 20 kPa, velocity was 1.25 m/sec. Description the circotion of

offic gravity 0.89.

A smooth pipe of diametre 80 mm 1000 m long is carrying water at 8 little per second if histographic viscosity is 0.015 stockes for water and T= 0.0791/0te)¹⁴⁸ Culculate

O coss of acciding (ii) wall about stress (iii) show stress in come from pipe wall.

the kness to energy the mess for the velocity distribution in the poundity tage.

A 2 m wide and 5.0 long plate when lowed farengh water at 20°C experiences a than
of 50.68 IV on both sides. Determine the velocity of the plate and the length raw.